Pub read

It’s a golden age for magazines on science and the environment.

Each year as I help to filter out the National Association of Science Writers’ Science in Society Awards nominees, I run across remarkable new-to-me publications.  You could spend wholly unworkable amounts of time on their dazzling stories and videos.

Some of these magazines seem to generate cash (Quartz offers one clue: sponsored content that you actually might want to read.) But most of the pubs run on institutional funding and/or donations, which is not always a recipe for long-term survival. Here are a few favorites, each with a story or two picked fairly randomly (except that I wrote two of them).

Aeon, Votes for the future
Ensia, Could this one simple idea be the key to solving farmer–environmentalist conflicts? and With storms intensifying and oceans on the rise, Boston weighs strategies for staying dry
Hakai, Damming Eden
High Country News, Why western wildfires are getting more expensive
Mongabay, Abandoned by their sponsors, Madagascar’s orphaned parks struggle on
Pacific Standard, Libya’s slave trade didn’t appear out of thin air
Quanta, Artificial intelligence learns to learn entirely on its own
Quartz, AI is now so complex its creators can’t trust why it makes decisions
Sapiens, Sea level rise threatens archaeological sites
Undark, The allure and perils of hydropower and Putting digital health monitoring tools to the test

Towers of power

Wind turbines go to work 16 miles off the Rhode Island coast.

Offshore wind turbines seemed a bit, well, gimmicky to me until a few years ago when I saw a farm calmly spinning its blades as I flew home from Europe. Anything that keeps working in the North Sea is entirely real. Now they have arrived in 600-foot-form off the New England coast, as I saw last month in a trip to Deepwater Wind’s installation off Block Island (thanks, Noelle Swan and the New England Association of Science Writers!). These giant beasts won’t always be easy to maintain, as we saw watching a crew struggling to jump onto one tower from a support vessel in gentle six-foot swells from Hurricane Maria. The 240-foot blades are no favor to offshore birds. But Deepwater Wind seems to have made every reasonable effort to minimize and monitor the overall environmental impact of the turbines, as attested by the National Wildlife Federation scientist onboard our fast ferry. Ocean wind turbine technology is advancing rapidly, one example being the replacement of the traditional gearbox with a GE direct-drive permanent magnet generator, noted Willett Kempton of the University of Delaware’s ocean wind power program. Wind turbines can tap steady winds at sea, where they can be built much larger than on land, and a wealth of projects are planned along the U.S. east coast. Yes, they’re designed to survive hurricanes, although maybe not a problem like Maria. And although offshore wind still can’t produce power here as cheaply as fossil-fuel plants, European wind costs are already below that mark.

Public Spectacle

A beacon of hope in a changing climate.

kid Spectacle

On a clear hot August day you can take a ferry to Spectacle Island and walk a winding path up to its northern summit, admiring wildflowers and eating blackberries. The summit is the highest point of land on Boston Harbor, with low wooded islands scattered around.

Off to the east you can spot a windmill near the huge sludge-digesting eggs of Deer Island, and a second windmill a few miles south at the tip of the Hull peninsula. These two points of land bracket the entrance from Massachusetts Bay to the harbor’s inner archipelago.

One distant day, Deer Island and Hull also may anchor a massive sea barrier, holding off an ocean that’s now projected to climb as much as eight feet by 2100.

Today it’s hard to imagine how we might start to build such a Big Dike, given our current politics.

But you can also see hopeful signs on this Spectacle for our ability to clean up our own messes.

The first time I sailed past the island it was a garbage dump, with the remnants of a horse-rendering plant buried under many feet of still-smoldering refuse.

Now that’s all taken away and replaced by fill from the Big Dig. The island was reengineered and replanted. Rich ecosystems began to reappear. On summer days like this, children swim a stone’s throw away from the site of the old factories.

In wildness is the preservation of the world, as Thoreau said. But not just in wildness.

Blossoms in biomedicine

The remarkable global push for cancer immunotherapies.
El_Talayón.byJose Ignacio Martinez Navarro
Editing a Nature special report on cancer immunotherapies, I’m struck most by the sheer scale of the development effort. Something like 3,000 clinical trials are underway, 800 of them combining treatments. The FDA has approved five checkpoint inhibitors, designed to unleash T cells against tumors. The agency seems close to approving the first CAR-T cell treatment, in which a patient’s T cells are removed, reengineered to attack cancer cells, regrown in volume and returned to the patient. Old dogs of immunotherapies are learning new tricks. Some newer approaches are getting much attention—notably personalized neoantigen vaccines, in which individual tumors are sequenced to give clues on how to best target their unique sets of immune-system-alarming antigens. Some clinical trials fail, some do surprisingly well.  The competition is more than intense and trials are not always carefully planned or analyzed. But the landscape is changing.

Ark de Triage

What should we prioritize to try to save from the flood tide of extinction?

Big_Ark_in_Dordrecht_3

“The world is on fire, and we have to do something about it,” said Kate Jones, an ecologist with University of College in London.

Jones was one of the speakers at two Harvard panels last month about the species extinction perils of our Anthropocene age: climate change, overfishing and overhunting, pollution, loss of habitat, invasive species, sea level rise, ocean acidification and all the ugly rest.

Extinction threats are not like a field of bullets hitting everything equally, noted Jones, speaking at a session on Human Imprints on the Tree of Life. Primates are at greater risk than most mammals. Amphibians, palms and corals are particularly vulnerable. Ditto species on islands. Animals with large body sizes, long lives and small ranges are vanishing. Along with, of course, so many other forms of life.

Facing this global storm of extinction with severely limited resources, what should conservation groups and governments prioritize?

One framework for decisions is to safeguard plants and animals with particular values to humans, as food, fuel, eye candy or just insurance for the future, the scientists said. Another framework is to consider the tree of life—protecting genetic diversity so that we can better understand biology and maybe exploit that understanding down the road. (Saving, for instance, the ginkgo tree, full of idiosyncrasies after branching off from other trees 100 million years ago.)

Habitat protection initiatives don’t always follow these outlines, naturally enough. As one audience member noted, many projects in Britain aim to preserve butterflies that remain happily common elsewhere in Europe.

“Most conservation is local, which is fine,” said Ana Rodrigues of the French National Center for Scientific Research. But very few resources work at a global level, Rodrigues emphasized.

One of the few is the Evolutionarily Distinct & Globally Endangered (EDGE) program led by the Zoological Society of London. “We can take attention away from charismatic megafauna like pandas, which are cute and fluffy with big eyes,” remarked Jones. Instead, attention can be paid to offbeat creatures like the pink fairy armadillo. (“It’s another poster child but I think it’s spreading out the love.”)

“We’re in deep trouble,” said Yale botanist Michael Donoghue. “We have to act quickly. The problem is, there are too many things we value.”

Many forms of ecological damage have spread surprisingly quickly across vast areas of ocean, noted biologists at an Ocean Evolution Today seminar. Jellyfish are on the march  as we vacuum up commercial finfish. Two-thirds of the Great Barrier Reef’s coral died off in two years. “In the Arctic, ice algae is disappearing and the entire food web is compromised,” commented Samantha Joye of the University of Georgia.

All too often this marine damage is invisible to most of us, said Boston University’s Randi Dawn Rotjan. Even survival stories can be worrisome–for instance, the killifish that have evolved to shrug off PCB-laced harbors.

More generally, “I’m worried that my children will jump into the water and not know what they haven’t seen,” Rotjan said.

“The most important ecosystems on the planet are almost unknown,” pointed out Bruce Robison of the Monterey Bay Aquarium Research Institute. One case in point: the ocean animals that migrate in “uncountable numbers” up toward the surface at night and then back down during the day, which brings carbon out of the surface waters.

Or we can think of the seafloor hot water vents discovered 40 years ago, which stream out key nutrients and may act “like the ocean’s multi-vitamins,” said Harvard’s Peter Girguis. Life throughout the sea, he added, “is linked to things that happen in the deepest darkest parts of the ocean.”

The scientists applauded the spread of marine sanctuaries, which can provide significant safeguards if established (and enforced) on sufficient scale. So far, sanctuaries have grown most notably in sparsely populated stretches of the Pacific. (The Republic of Kiribati’s Phoenix Islands Protected Area is a coral archipelago the size of California with exactly 24 people, living on one island, Rotjan said.) The High Seas Alliance aims to extend this strategy with protected areas in the no-man’s-lands of the open ocean.

Another positive sign is the rapid growth of sustainable aquaculture, to supplement and replace capture fisheries.

And we also can see payoffs of local and regional marine renewal efforts, such as the massive cleanup of Boston Harbor. Last month, out with a boatful of biologists for a conference hosted by Northeastern University, we were cheered to see harbor porpoises calmly working the clean waters of the Mystic River, in what not long ago was the dirtiest harbor in the U.S.

Top, the “life-size” version of Noah’s Ark built by Johan Huibers of the Netherlands. Bottom, clockwise from panda: Ice algae, pink fairy armadillo, ginkgo berries, mussel.

Moving the needles

Updates on progress in research against type 1 diabetes.

BetaBionics

JDRF New England’s annual research briefing offers a quick summary of research for type 1 diabetes. Here are four snapshots from last night’s talks by JDRF’s Julia Greenstein and University of Colorado’s Peter Gottlieb:

  1. The march continues toward an “artificial pancreas” that automatically provides just the right amounts of insulin around the clock. The first of four NIH-sponsored pivotal clinical trials kicked off in February. Many of us are most intrigued by the Beta Bionics combo device, designed to deliver both insulin (which lowers blood glucose levels) and glucagon (which raises them). This device is a few years behind some of its competitors, but we like it for the same reason we would prefer a self-driving car with brakes.
  1. JDRF has awarded more than 50 grants for research on encapsulating insulin-producing beta cells derived from stem cells, to initiatives such as the Boston Autologous Islet Replacement Therapy Program. News from the much-watched Viacyte clinical trial, however, is not so good. The Viacyte capsule prevents against some immune response but generates a foreign-body reaction. Next–generation encapsulation technologies may do better on immune response but must still grapple with another fiendishly tricky issue—admitting suitably high levels of oxygen to the beta cells. (The pancreas is even hungrier for oxygen than the brain, Greenstein noted.)
  1. For decades, immunologists in both cancer and autoimmune diseases like type 1 diabetes made important discoveries that didn’t translate into better treatments. That unhappy situation has changed bigtime with cancer immunology, and diabetes researchers are now adopting two general strategies in cancer treatment. One strategy is to recognize that the disease may work quite differently in different people—for example, in trials of drugs designed to delay or prevent progression of the disease, often one group responds much better than another. So “personalized medicine”, tailored to specific groups of patients, may recast the field in type 1 just as it has done with many forms of cancer. The second strategy aims to confront the complexity of the disease by combining treatments, as the University of Miami’s Jay Skyler has proposed.
  1. No clear winners have ever emerged from the dozens of trials of drugs designed to delay or prevent type 1 diabetes onset. One contender that’s still standing is oral insulin acting as a vaccine. Drug companies have chased the elusive goal of an insulin pill for a century (with a few recent signs of progress) but such pills typically get ripped apart in your gut without lowering your blood glucose levels. However, the resulting fragments of insulin may generate an anti-immune protective response in the pancreas. Early clinical tests of this vaccine concept (such as this one reported in 2015) have shown promise for some patients. The latest clinical results, including early findings from a phase II trial with higher doses, will be announced on June 12th at the American Diabetes Association annual scientific sessions. We’ll be watching!

10 farm fish stories

What aquaculture experts tell me about the world’s fastest-growing food source.26326495102_757a4e2476_k

  1. Nigerian catfish are bred so densely you can walk across their ponds.
  2. “In an urban environment, why not use a rooftop to grow fish in a couple of recirculating ponds?”
  3. China grows grass carp in quantities equal to the catch of the entire U.S. fishing fleet.
  4. “Everyone’s working hard to reduce the use of fishmeal and fish oil in feed, and to fool the fish into thinking they are eating what they want.”
  5. All the tilapia we eat are male, with females forced that way early in life.
  6. “Many agricultural landscapes are becoming more saline and facing more seasonal inundation from the sea. There’s a big opportunity for aquaculture explicitly to be part of a planned transition that can not only recover but actually dramatically increase the value of these landscapes.”
  7. Shrimp lack an immune system.
  8. “In Africa, the sooner we move past small-scale aquaculture, the better. It’s a dead duck.”
  9. Eight miles off Panama’s Atlantic coast, cobia destined for plates in the United States fatten up in high-tech cages.
  10. The world needs to grow 30 million more tons of fish each year by 2050: “We mostly know how, but is there a will to do it?”

Photos courtesy WorldFish.