Running the Engine for your own cells

MIT’s tough-tech accelerator joins the march toward truly individual therapies.

Sometimes, limitations on a given technology that seem set in stone instead will vanish pretty quickly. That might be happening in the field of cell therapies, where treatments that remove, turbocharge and reinfuse your own cells might seem way too difficult and expensive for all but the deadliest diseases.

But maybe not.

That’s what experts keep telling me as I work on a Nature story about regulatory T cell therapies for autoimmune diseases. Maybe the bring-your-own-cells approach will work out for a number of these conditions, and maybe even we’ll see that in clinics this decade.

If so, these living drugs will be built on progress in immunology, cell engineering for chimeric antigen receptor (CAR) T cell treatments for blood cancers, stem cell research, and genome editing tools headlined by CRISPR-Cas9. And the drugmakers will employ industrial tools provided by startup firms.

Two examples of such infrastructure platforms come from MIT’s Engine, a “tough-tech” accelerator for startup firms that attack global societal problems.

The Engine has placed very few bets on biomedical firms, but Cellino Biotech and Kytopen are exceptions.

Cellino “has the potential to manufacture personalized cell therapies at-scale for the first time,” as co-founder and CEO Nabiha Saklayen puts it. “Progressing towards scalable stem cell manufacturing is the only way to provide personalized cell therapies to all patients.”

Kytopen aims to transform the cell and gene therapy industry with its microfluidics and electric-field-based platform that can automate and manufacture the genetic engineering of cells 10,000x times faster than current methods,” the company says.

In autoimmune labs and clinics, hopes are high for individualized cell therapies. “In the right context, these cells can be effective in resetting the immune system,” one prominent immunologist told me. “This can be really transformational.”

Image courtesy Doug Melton’s lab at Harvard, now routinely churning out batches of half a billion human cells that act very much like the pancreatic islet cells that fail in type 1 diabetes.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s